Shakers, Rockers, and Stirred Tank Bioreactors – Advantages of Each

We’ve previously written articles comparing single‑use bioreactors to stainless steel or glass multi‑use bioreactors. You can read about when to switch to single‑use, the advantages of single‑use in small‑scale bioprocessing, and the environmental impacts of single- and multi‑use bioreactors. In this article, we compare the following mixing technologies: shaker, rocker, and stirred tank bioreactors. At Interphex 2021 we had the opportunity to speak with engineers from Kuhner Shaker about their new shaker bioreactors, MicroDigital Co. about their single‑use Cel Bic rocker bioreactors, and Eppendorf about their stirred tank bioreactors. Each of these bioreactor technologies can be used with single‑use or reusable bioreactors, differing primarily in their method of aerating and mixing the culture to maximize oxygen transfer from the bioreactor environment into the growing cells.

Stirred tank bioreactors

Stirring bioreactor representation
Stirred tank bioreactors are the industry classic. They are generally cylindrical, contain at least one sparger to deliver gas into the culture medium, and utilize an impeller to mix the cell culture and break up/distribute the gas bubbles throughout the bioreactor. These bioreactors may be either single‑use or stainless steel. Single‑use reactors range from about 15 mL to 2000 L, and reusable bioreactors may be as large as 50,000 L.

Advantages

Stirred tank bioreactors are often used to scale a bioprocess from R&D to manufacturing scale. Because they are time tested and most commonly available, the math, physics, and biology of mass transfer is well known. These known mixing principles make for highly efficient gas transfer in stirred tank bioreactors. They are also highly flexible across a wide range of operating conditions, meaning they can be used to culture sensitive mammalian cells at low shear stresses, or to grow certain fungi requiring extreme temperatures and high pressures.

Disadvantages

While sparging allows for oxygen transfer through larger volumes and has a smaller footprint, it is not as efficient as oxygen transfer through the headspace. Another disadvantage is the shear stress introduced by the impellers, which must be minimized when stirring mammalian cultures. Impellers additionally introduce foam into bioreactors and must be treated with anti‑foaming agents. Finally, the impellers and spargers in stainless steel bioreactors must be thoroughly cleaned to prevent contamination.

Rocker bioreactors

Rocking Bioreactor diagram
Rocker (or wave) bioreactors are also fairly common. They are generally large, plastic, single‑use bags that lay flat on a gently rocking platform (<100 rpm). These bioreactors deliver oxygen into the cell culture through the headspace and mix the broth using the rocker platform. Rocker bioreactors are most commonly used in laboratories. Since they are highly efficient but have a large footprint, they may also be used for small production volumes or to seed larger stirred tank bioreactors.

Advantages

The large, flat, 2‑dimensional rocker bioreactors have a very high surface‑area‑to‑volume ratio for highly efficient oxygen mass transfer. They are also gentler than stirred tank bioreactors because they fully aerate the culture without the need for impellers. Finally, as rocker bioreactors do not use spargers or impellers and are most often single use, they are simple to clean and pose almost no risk of cross‑contamination.

Disadvantages

Large, flat rocker bioreactors do not scale well. They generally range from only 5 to 100 L, with their size limited by the rate of oxygen transfer through the headspace.

Shaker bioreactors

Spinning Bioreactor representation
Shaker bioreactors sit on a platform that mixes by moving in a circular motion as simple as a 2D circle or as complex as a 3D figure eight. Like rocker bioreactors, they deliver gas entirely through the headspace.

Advantages

The swirling motion moves the cell culture broth up onto the sides of the bioreactor, resulting in a very thin fluid layer adhering to the side of the vessel. This enables maximum oxygen transfer without the need for a large footprint. Mass transfer is entirely dependent on gas flow through the headspace, so shaker bioreactors scale well linearly.

This approach to mixing also mitigates shear stress, making it well suited for mammalian cell cultures.

Shaker bioreactors, not shaker flasks

Shaker flasks are a low-cost, easy-to-use option for cell culture in a small-scale lab setting. They do not scale well, as they lack the full sensor package of a bioreactor and cannot monitor, control, and respond to environmental conditions. Shaker bioreactors are fully sensorized and scalable.

Disadvantages

While shaker bioreactors solve many of the issues associated with sparging and impelling, they are a much newer technology. The math of scale‑up and oxygen mass transfer are much less well‑known than for other bioreactor types.

What bioreactor type should I use?

Stirred tank bioreactors are proven to scale well, can be tightly controlled, and operate on known mass transfer principles. Rocker bioreactors have the most efficient mass transfer, but footprint rapidly becomes an issue during scale up. Shaker bioreactors are a newer technology, but one with the potential for high efficiency and yields, and linear scaling.

Depending on the production volumes needed and the scale‑up plan, different types of bioreactors will likely be more or less advantageous during different development phases. Choosing bioreactors that are optimized for each development phase is a solid strategy. However, it may be viable to instead choose a bioreactor which is not well suited for a early phases but can easily scale from lab to manufacturing scale.

Enabling Liquid Hydrogen Fuel Systems in Maritime Innovation

Alicat MCRQ Mass Flow Controllers Support TU Delft Hydro Motion Team’s Hydrogen Boat for the Monaco Energy Boat Challenge

Jan 6, 2022 | Bioreactors & Fermenters

Empowering Discovery on Water

The transition to sustainable energy in the maritime sector demands more than ambition, it requires precision. That is why Alicat Scientific is proud to support the TU Delft Hydro Motion Team as a Bronze Partner in their groundbreaking 2025 campaign: to design, build, test and race Mira, a liquid hydrogen-powered boat at the Monaco Energy Boat Challenge.

Equipping this innovative project with our MCRQ mass flow controllers enables the team to manage hydrogen fuel delivery safely and accurately, helping them prove that liquid hydrogen can power the next generation of clean marine propulsion.

Mira at the official reveal, Hydro Motion Team’s 2025 liquid hydrogen-powered boat.

Figure 1: Mira at the official reveal. Hydro Motion Team’s 2025 liquid hydrogen-powered boat.

The Challenge: Making Hydrogen Work for Maritime Transport

The goal of the TU Delft Hydro Motion Team is as ambitious as it is inspiring: to design, build, test, and race a fully functioning boat powered by liquid hydrogen, all within one year, and to compete at the Monaco Energy Boat Challenge 2025. But beyond the competition itself, the team’s mission reaches further. By proving that a boat can operate successfully on liquid hydrogen, they aim to spark broader innovation across the maritime sector and demonstrate hydrogen’s potential as a clean, scalable alternative to fossil fuels.

This project builds on the team’s past successes with compressed hydrogen, already a proven, zero-emission marine fuel. But as the team pushes for longer range and greater onboard efficiency, storage volume and energy density become the next major challenges. To solve this, the team chose to work with liquid hydrogen. With a volumetric energy density three times higher than compressed hydrogen at 350 bar, liquid hydrogen offers a powerful solution for saving space and extending endurance, key requirements in performance vessels.

But storing and using liquid hydrogen introduces challenges. The fuel must be kept at -253°C, requiring insulated cryogenic tanks. The team addresses this with a custom double-walled, vacuum-insulated carbon-fibber tank system, limiting heat ingress to just 7 watts, equivalent to a small LED bulb. To avoid wasting energy, waste heat from the fuel cell is used to bring hydrogen up to the required ~20°C operating temperature before reaching the fuel cell.

These trade-offs (boil-off rates, tank volume, storage weight, and onboard vaporization) are exactly the kinds of real-world constraints this project is designed to explore. And while Mira is a compact, foiling boat, the broader engineering question remains: could a system like this scale to larger vessels, such as ferries? That is the kind of thinking Alicat is excited to support with partners who are pushing the boundaries of what is possible.

The Role of Alicat: Flow Control After Vaporization

In Mira’s hydrogen system, hydrogen is stored as a cryogenic liquid. Before reaching the fuel cell, it passes through a vaporizer, transitioning into gas at ambient temperature. This phase is critical: delivering gas at the right pressure and flow requires stable regulation, fast feedback, and precise control.

Simplified diagram of the Hydro Motion Team’s hydrogen system.

Figure 2: Simplified diagram of the Hydro Motion Team’s hydrogen system.

To meet this need, the team integrated the Alicat MCRQ mass flow controller immediately downstream of the vaporizer. This device manages the mass flow of hydrogen gas into the fuel cell and enables:

  • Delivers stable and precise feed pressure to the fuel cell.
  • Measures hydrogen consumption through real-time mass flow monitoring
  • Monitors pressure and temperature to help prevent fuel cell issues like dehydration or fuel starvation.
  • Supports test validation and real-world performance optimization.

Compact, ATEX Zone 2 certified, and designed for fast system response, the MCRQ integrates easily into the tight constraints of a race-ready vessel. Its role is vital during system development, helping the team collect data, tune parameters, and prepare for race-day performance. In short, it helps translate bold hydrogen engineering into operational reliability.

Alicat’s MCRQ unit mounted inside the Hydro Motion Team’s hydrogen control system.

Figure 3:  Alicat’s MCRQ unit mounted inside the Hydro Motion Team’s hydrogen control system.

Why the MCRQ Was Selected

The Hydro Motion Team, together with our application engineers, selected the Alicat MCRQ series for its proven capability in low-flow hydrogen gas applications, offering a powerful combination of precision, speed, and safety. Key features that influenced the decision include:

  • Flow range of 0–1.5 g/s, which translates to ±0.01 g/s uncertainty at a nominal 1 g/s flow, small enough to maintain consistent fuel cell output.
  • 4–20 mA analog output, chosen specifically for its high-speed update rates (kHz range)
  • ATEX Zone 2 IIC certification, requiring minimal additional safety infrastructure.
  • Upstream valve position, enabling precise regulation of downstream feed pressure, supporting target values like the ~2.5 bar commonly seen in fuel cell stacks.
  • ±1.0% accuracy of reading (or ±0.2% of full scale)

Together, these features provide the team with a robust, compact, and responsive solution, a key enabler of real-world testing and a step toward scalable, clean hydrogen propulsion.

Competition Progress and What Comes Next

The TU Delft team unveiled the boat, Mira, earlier this year and is now deep into the testing phase, preparing for the Monaco Energy Boat Challenge 2025.

As testing progresses, the team continues optimizing the integration between hydrogen storage, vaporization, and control systems. Alicat’s instrumentation plays a central role in capturing this performance data for analysis and refinement.

This partnership represents more than a technical contribution. It reflects our belief that sustainable innovation thrives where education, engineering, and real-world experimentation meet.

By supporting the Hydro Motion Team and their work on Mira, Alicat contributes to:

  • Advancing liquid hydrogen fuel systems in marine transport
  • Empowering hands-on engineering education
  • Promoting practical low-emission propulsion technologies

We are honoured to be part of this project and proud to know that our instruments are helping to steer the future of clean maritime energy.

Together, we are not just measuring hydrogen. We are helping to Fuel the Future.

Your Title Goes Here

Alicat Newsletter

Sign-up for our newsletter to be informed of product applications, updates, news, and upcoming events

Related articles

Closed Loop Outgassed Materials

Measuring outgassed material in the bioreactor headspace is a powerful tool for understanding the metabolic activity of your cell culture and the effectiveness of your...

read more