Transition from Manual and Mechanical Controls to Electronic Precision and Automation

PVD coating techniques use physical processes to deposit thin films on surfaces. These films offer an extremely convenient way to obtain desirable surface characteristics without having to completely change the material of a product. The layers can be as thin as only thousandths of a nanometer and can transform all types of surfaces to resist corrosion, decrease friction, increase hardness, and much more.

In this article, we will explore the two most common methods of physical vapor deposition used to apply PVD coatings, thermal evaporation and sputtering deposition.

PVD method 1: Thermal evaporation

Thermal energy is used to vaporize the target material so it can be used to deposit thin film onto the substrate. Deposited materials may include pure metals, non‑metals, oxides, and nitrides. This process offers a high level of control over film properties like thickness, adhesion, stress, and grain structure. Compared to other PVD and CVD techniques, thermal evaporation has one of the highest deposition rates.

A typical thermal evaporation system consists of the following components:

  • Substrate(s) and target
  • Heat source
  • Vacuum pump
  • Pressure controller / Gate valve
  • Deposition rate monitor
  • RGA (optional)

Thermal evaporation requires a very high vacuum of about (1×10-6 to 1×10-9 Torr). The required vacuum level depends on purity needs and the required mean free path. While differing in some specifics such as level of vacuum, the following three steps are common to all thermal evaporation setups:

  1. Vaporization: The target material is first placed into a crucible at the bottom of the vacuum chamber. A heat source (tungsten filament or electron beam) is then used to sublime or boil the target material into a vapor.
  2. Transport from target to substrate: The vaporized target material forms a vapor plume which travels to the substrate, installed directly above the target. Maintaining a stable, high vacuum level ensures the environment is free from contamination, and a mean free path ensures a virtually collision‑free journey of the vapors from the target to the substrate.
  3. Deposition and nucleation: Since the substrate’s surface is at a relatively low temperature, the vapors condense when they come in contact with it. Condensation is followed by nucleation, creating the first thin film layer. This process is carried out until the desired film thickness is reached.

Thermal evaporation methods

Thermal evaporation also has subtypes, differentiated by method of vaporizing the target material. Methods include molecular beam epitaxy (MBE), electron beam deposition, flash evaporation and resistive evaporation.

Common applications

Thermal evaporation is most often used to deposit electrically conductive metallic layers on solar cells, OLED displays and thin‑film transistors. It is also used in the manufacturing process of aluminum PET films.

PVD method 2: Sputtering deposition

Sputtering deposition is a line of sight process like thermal evaporation, however it uses energized gas molecules to deposit thin films on the substrate and provides better step coverage. This method can be used to deposit metals, non‑metals, alloys, and oxides.

A typical sputtering system consists of the following components:

  • Substrate(s) and target
  • Cathode and anode
  • Mass flow controllers
  • Pressure controller/gate valve
  • Vacuum pump
  • Quartz crystal

Sputtering is performed at relatively low vacuums of 0 – 0.03 Torr and argon is the most commonly used gas due to its high molecular weight. The three basic steps of sputtering deposition follow:

  1. Vaporization: The target is connected to the cathode, which causes the free electrons to accelerate away from it. These electrons then collide with the argon molecules, knocking electrons from the outermost shells and leaving positively charged argon ions (responsible for the plasma glow). As the argon ions accelerate towards the cathode and collide with the target, they knock off (sputter) target molecules.
  2. Transport from target to substrate: The target molecules absorb a part of the kinetic energy from the argon ions, propelling them towards the substrate and forming a vapor stream. A stable vacuum level is crucial at this stage to ensure a high quality thin film.
  3. Film growth: The sputtered target molecules stick to the substrate and form the thin film coating. The rate of deposition can be optimized by controlling the flow rate of the inert gas.

Sputtering methods

Different sputtering processes like radio frequency, DC, pulsed DC, and magnetron sputtering are categorized based on the type of power supply used. A special technique called reactive sputtering is used to when depositing chemical compounds.

Common applications

The earliest sputtering application is the production of computer hard disks. Sputtering is now used extensively in integrated circuit processing, production of anti‑reflective or high emissivity film coated glass, cutting tool coatings, and coating of CDs and DVDs.

Improving pressure control in your deposition setup

Alicat integrated vacuum controllers are equipped with a dedicated vacuum sensor and control pressure with NIST‑traceable accuracy to ± 0.125% of full scale. These units are built to easily replace the vacuum sensor, controller module, and gate valve in your system. We also offer mass flow controllers specifically made to easily drop into your pre‑existing setup, with 30 ms response times and accuracy to 0.5% of reading.

Get in touch with an applications engineer and learn more about upgrading your deposition setup to produce high quality, repeatable PVD coatings.

Enabling Liquid Hydrogen Fuel Systems in Maritime Innovation

Alicat MCRQ Mass Flow Controllers Support TU Delft Hydro Motion Team’s Hydrogen Boat for the Monaco Energy Boat Challenge

Empowering Discovery on Water

The transition to sustainable energy in the maritime sector demands more than ambition, it requires precision. That is why Alicat Scientific is proud to support the TU Delft Hydro Motion Team as a Bronze Partner in their groundbreaking 2025 campaign: to design, build, test and race Mira, a liquid hydrogen-powered boat at the Monaco Energy Boat Challenge.

Equipping this innovative project with our MCRQ mass flow controllers enables the team to manage hydrogen fuel delivery safely and accurately, helping them prove that liquid hydrogen can power the next generation of clean marine propulsion.

Mira at the official reveal, Hydro Motion Team’s 2025 liquid hydrogen-powered boat.

Figure 1: Mira at the official reveal. Hydro Motion Team’s 2025 liquid hydrogen-powered boat.

The Challenge: Making Hydrogen Work for Maritime Transport

The goal of the TU Delft Hydro Motion Team is as ambitious as it is inspiring: to design, build, test, and race a fully functioning boat powered by liquid hydrogen, all within one year, and to compete at the Monaco Energy Boat Challenge 2025. But beyond the competition itself, the team’s mission reaches further. By proving that a boat can operate successfully on liquid hydrogen, they aim to spark broader innovation across the maritime sector and demonstrate hydrogen’s potential as a clean, scalable alternative to fossil fuels.

This project builds on the team’s past successes with compressed hydrogen, already a proven, zero-emission marine fuel. But as the team pushes for longer range and greater onboard efficiency, storage volume and energy density become the next major challenges. To solve this, the team chose to work with liquid hydrogen. With a volumetric energy density three times higher than compressed hydrogen at 350 bar, liquid hydrogen offers a powerful solution for saving space and extending endurance, key requirements in performance vessels.

But storing and using liquid hydrogen introduces challenges. The fuel must be kept at -253°C, requiring insulated cryogenic tanks. The team addresses this with a custom double-walled, vacuum-insulated carbon-fibber tank system, limiting heat ingress to just 7 watts, equivalent to a small LED bulb. To avoid wasting energy, waste heat from the fuel cell is used to bring hydrogen up to the required ~20°C operating temperature before reaching the fuel cell.

These trade-offs (boil-off rates, tank volume, storage weight, and onboard vaporization) are exactly the kinds of real-world constraints this project is designed to explore. And while Mira is a compact, foiling boat, the broader engineering question remains: could a system like this scale to larger vessels, such as ferries? That is the kind of thinking Alicat is excited to support with partners who are pushing the boundaries of what is possible.

The Role of Alicat: Flow Control After Vaporization

In Mira’s hydrogen system, hydrogen is stored as a cryogenic liquid. Before reaching the fuel cell, it passes through a vaporizer, transitioning into gas at ambient temperature. This phase is critical: delivering gas at the right pressure and flow requires stable regulation, fast feedback, and precise control.

Simplified diagram of the Hydro Motion Team’s hydrogen system.

Figure 2: Simplified diagram of the Hydro Motion Team’s hydrogen system.

To meet this need, the team integrated the Alicat MCRQ mass flow controller immediately downstream of the vaporizer. This device manages the mass flow of hydrogen gas into the fuel cell and enables:

  • Delivers stable and precise feed pressure to the fuel cell.
  • Measures hydrogen consumption through real-time mass flow monitoring
  • Monitors pressure and temperature to help prevent fuel cell issues like dehydration or fuel starvation.
  • Supports test validation and real-world performance optimization.

Compact, ATEX Zone 2 certified, and designed for fast system response, the MCRQ integrates easily into the tight constraints of a race-ready vessel. Its role is vital during system development, helping the team collect data, tune parameters, and prepare for race-day performance. In short, it helps translate bold hydrogen engineering into operational reliability.

Alicat’s MCRQ unit mounted inside the Hydro Motion Team’s hydrogen control system.

Figure 3:  Alicat’s MCRQ unit mounted inside the Hydro Motion Team’s hydrogen control system.

Why the MCRQ Was Selected

The Hydro Motion Team, together with our application engineers, selected the Alicat MCRQ series for its proven capability in low-flow hydrogen gas applications, offering a powerful combination of precision, speed, and safety. Key features that influenced the decision include:

  • Flow range of 0–1.5 g/s, which translates to ±0.01 g/s uncertainty at a nominal 1 g/s flow, small enough to maintain consistent fuel cell output.
  • 4–20 mA analog output, chosen specifically for its high-speed update rates (kHz range)
  • ATEX Zone 2 IIC certification, requiring minimal additional safety infrastructure.
  • Upstream valve position, enabling precise regulation of downstream feed pressure, supporting target values like the ~2.5 bar commonly seen in fuel cell stacks.
  • ±1.0% accuracy of reading (or ±0.2% of full scale)

Together, these features provide the team with a robust, compact, and responsive solution, a key enabler of real-world testing and a step toward scalable, clean hydrogen propulsion.

Competition Progress and What Comes Next

The TU Delft team unveiled the boat, Mira, earlier this year and is now deep into the testing phase, preparing for the Monaco Energy Boat Challenge 2025.

As testing progresses, the team continues optimizing the integration between hydrogen storage, vaporization, and control systems. Alicat’s instrumentation plays a central role in capturing this performance data for analysis and refinement.

This partnership represents more than a technical contribution. It reflects our belief that sustainable innovation thrives where education, engineering, and real-world experimentation meet.

By supporting the Hydro Motion Team and their work on Mira, Alicat contributes to:

  • Advancing liquid hydrogen fuel systems in marine transport
  • Empowering hands-on engineering education
  • Promoting practical low-emission propulsion technologies

We are honoured to be part of this project and proud to know that our instruments are helping to steer the future of clean maritime energy.

Together, we are not just measuring hydrogen. We are helping to Fuel the Future.

Your Title Goes Here

Alicat Newsletter

Sign-up for our newsletter to be informed of product applications, updates, news, and upcoming events

Related articles