Control Systems for Benchtop Bioreactors

In the past, successes and failures of large‑scale biologics production could largely be attributed to the experience of the operators and their “magic touch” (or lack thereof). This is in stark contrast to Pharma 4.0, and its emphasis on connected, integrated data systems for best control of pharmaceutical manufacturing from benchtop bioreactor control systems to controllers for GMP environments.

Process analytical technology (PAT) focuses on incorporating sensor data into system-level controls to provide precise, real‑time monitoring and control of various process parameters — and bioreactor systems are largely ahead of the curve in their adoption of PAT technologies.

Smart sensors and advanced analytics have clearly and consistently provided better control and scalability of bioreactor processes. The ability to monitor and analyze key process parameters has made it easier for scientists and manufacturers to move processes between benchtop research, troubleshooting, pilot, and production environments.

Benchtop control systems mean compromising between flexibility and scalability

Benchtop bioreactor systems (typically 1 to 25 liters) are critical for research, process development, and troubleshooting. Research environments commonly implement glass vessels — they’re cheap, well‑understood, and easy to autoclave. They can also be pressurized to aid in oxygen transfer, and their transparency allows researchers to visually check on this system.

For these reactors, control systems are generally highly flexible, designed for modularity or easy configuration with a variety of physical features and sensors. This allows the researcher to experiment with a mix of spargers, impellers, probes, dip tubes, and other sensors and equipment.

This setup gives the researcher flexibility to determine optimal values for key process parameters — but it is not very scalable. The next step is to redesign the process for scalability, using control systems that will grow with the process development group.

Process development systems enable scaling up and down

Process development systems are focused on determining the critical process parameters that will scale up to a production environment. Meanwhile, troubleshooting systems are scaled‑down versions of pilot or production systems. They are focused on identifying and adjusting for any issues at a smaller scale, which is both cheaper and has process parameters that are more easily controlled and adjusted.

For both system types, appropriately monitoring and controlling process parameters is key to success. While this is of course true for parameters such as oxygen transfer and uptake rates, it is equally important to ensure that the sensors and control system will successfully scale.

For instance, vessel material, size, shape, and stirring mechanism can all stay constant, largely regardless of process phase. But parameters such as bubble size, which has a direct effect on oxygen uptake, must be optimized for each new culture size and bioreactor configuration, and cannot be fully determined at the benchtop.

Some controllers are designed to handle a wide array of applications and culture types at the benchtop level. While these controllers are highly flexible, they are not designed for scalability. For example, bioreactors and fermenters can often be used interchangeably for cultures up to 1 liter. At larger scales, however, the different processes require equipment specialized to either microorganisms or microbes.

Other controllers are more conveniently designed to be used across multiple process phases, with a single interface focused on scaled data handling and the ability to easily integrate with a SCADA.

Monitoring per PAT directive allows for better process control

In 2004, the FDA issued a guidance on PAT, encouraging the pharmaceutical industry to implement modern systems for maximum quality assurance and process efficiency — including monitoring all relevant process variables in GMP environments.

There are significant advantages to monitoring these variables as early in development as possible. By establishing process conditions at benchtop and carrying those through to manufacturing operations, engineers and scientists are able to better understand and control their processes, leading to more precise scale‑ups and simpler troubleshooting at any step of the process.

For example, back pressure is most often only measured in production environments, largely for control of steam‑in‑place. However, the back pressure on a bioreactor also impacts oxygen mass transfer and uptake, providing information needed to maximize oxygen uptake by cells. A bioreactor control system designed to measure back pressure therefore gives us information on the culture growth that would otherwise have been unavailable, and gives us better control over scaling with the process.

Enabling Liquid Hydrogen Fuel Systems in Maritime Innovation

Alicat MCRQ Mass Flow Controllers Support TU Delft Hydro Motion Team’s Hydrogen Boat for the Monaco Energy Boat Challenge

Jan 11, 2023 | Bioreactors & Fermenters

Empowering Discovery on Water

The transition to sustainable energy in the maritime sector demands more than ambition, it requires precision. That is why Alicat Scientific is proud to support the TU Delft Hydro Motion Team as a Bronze Partner in their groundbreaking 2025 campaign: to design, build, test and race Mira, a liquid hydrogen-powered boat at the Monaco Energy Boat Challenge.

Equipping this innovative project with our MCRQ mass flow controllers enables the team to manage hydrogen fuel delivery safely and accurately, helping them prove that liquid hydrogen can power the next generation of clean marine propulsion.

Mira at the official reveal, Hydro Motion Team’s 2025 liquid hydrogen-powered boat.

Figure 1: Mira at the official reveal. Hydro Motion Team’s 2025 liquid hydrogen-powered boat.

The Challenge: Making Hydrogen Work for Maritime Transport

The goal of the TU Delft Hydro Motion Team is as ambitious as it is inspiring: to design, build, test, and race a fully functioning boat powered by liquid hydrogen, all within one year, and to compete at the Monaco Energy Boat Challenge 2025. But beyond the competition itself, the team’s mission reaches further. By proving that a boat can operate successfully on liquid hydrogen, they aim to spark broader innovation across the maritime sector and demonstrate hydrogen’s potential as a clean, scalable alternative to fossil fuels.

This project builds on the team’s past successes with compressed hydrogen, already a proven, zero-emission marine fuel. But as the team pushes for longer range and greater onboard efficiency, storage volume and energy density become the next major challenges. To solve this, the team chose to work with liquid hydrogen. With a volumetric energy density three times higher than compressed hydrogen at 350 bar, liquid hydrogen offers a powerful solution for saving space and extending endurance, key requirements in performance vessels.

But storing and using liquid hydrogen introduces challenges. The fuel must be kept at -253°C, requiring insulated cryogenic tanks. The team addresses this with a custom double-walled, vacuum-insulated carbon-fibber tank system, limiting heat ingress to just 7 watts, equivalent to a small LED bulb. To avoid wasting energy, waste heat from the fuel cell is used to bring hydrogen up to the required ~20°C operating temperature before reaching the fuel cell.

These trade-offs (boil-off rates, tank volume, storage weight, and onboard vaporization) are exactly the kinds of real-world constraints this project is designed to explore. And while Mira is a compact, foiling boat, the broader engineering question remains: could a system like this scale to larger vessels, such as ferries? That is the kind of thinking Alicat is excited to support with partners who are pushing the boundaries of what is possible.

The Role of Alicat: Flow Control After Vaporization

In Mira’s hydrogen system, hydrogen is stored as a cryogenic liquid. Before reaching the fuel cell, it passes through a vaporizer, transitioning into gas at ambient temperature. This phase is critical: delivering gas at the right pressure and flow requires stable regulation, fast feedback, and precise control.

Simplified diagram of the Hydro Motion Team’s hydrogen system.

Figure 2: Simplified diagram of the Hydro Motion Team’s hydrogen system.

To meet this need, the team integrated the Alicat MCRQ mass flow controller immediately downstream of the vaporizer. This device manages the mass flow of hydrogen gas into the fuel cell and enables:

  • Delivers stable and precise feed pressure to the fuel cell.
  • Measures hydrogen consumption through real-time mass flow monitoring
  • Monitors pressure and temperature to help prevent fuel cell issues like dehydration or fuel starvation.
  • Supports test validation and real-world performance optimization.

Compact, ATEX Zone 2 certified, and designed for fast system response, the MCRQ integrates easily into the tight constraints of a race-ready vessel. Its role is vital during system development, helping the team collect data, tune parameters, and prepare for race-day performance. In short, it helps translate bold hydrogen engineering into operational reliability.

Alicat’s MCRQ unit mounted inside the Hydro Motion Team’s hydrogen control system.

Figure 3:  Alicat’s MCRQ unit mounted inside the Hydro Motion Team’s hydrogen control system.

Why the MCRQ Was Selected

The Hydro Motion Team, together with our application engineers, selected the Alicat MCRQ series for its proven capability in low-flow hydrogen gas applications, offering a powerful combination of precision, speed, and safety. Key features that influenced the decision include:

  • Flow range of 0–1.5 g/s, which translates to ±0.01 g/s uncertainty at a nominal 1 g/s flow, small enough to maintain consistent fuel cell output.
  • 4–20 mA analog output, chosen specifically for its high-speed update rates (kHz range)
  • ATEX Zone 2 IIC certification, requiring minimal additional safety infrastructure.
  • Upstream valve position, enabling precise regulation of downstream feed pressure, supporting target values like the ~2.5 bar commonly seen in fuel cell stacks.
  • ±1.0% accuracy of reading (or ±0.2% of full scale)

Together, these features provide the team with a robust, compact, and responsive solution, a key enabler of real-world testing and a step toward scalable, clean hydrogen propulsion.

Competition Progress and What Comes Next

The TU Delft team unveiled the boat, Mira, earlier this year and is now deep into the testing phase, preparing for the Monaco Energy Boat Challenge 2025.

As testing progresses, the team continues optimizing the integration between hydrogen storage, vaporization, and control systems. Alicat’s instrumentation plays a central role in capturing this performance data for analysis and refinement.

This partnership represents more than a technical contribution. It reflects our belief that sustainable innovation thrives where education, engineering, and real-world experimentation meet.

By supporting the Hydro Motion Team and their work on Mira, Alicat contributes to:

  • Advancing liquid hydrogen fuel systems in marine transport
  • Empowering hands-on engineering education
  • Promoting practical low-emission propulsion technologies

We are honoured to be part of this project and proud to know that our instruments are helping to steer the future of clean maritime energy.

Together, we are not just measuring hydrogen. We are helping to Fuel the Future.

Your Title Goes Here

Alicat Newsletter

Sign-up for our newsletter to be informed of product applications, updates, news, and upcoming events

Related articles

Closed Loop Outgassed Materials

Measuring outgassed material in the bioreactor headspace is a powerful tool for understanding the metabolic activity of your cell culture and the effectiveness of your...

read more