Alicat Scientific stellt sein einzigartiges multivariates Interface für das miniaturisierte Coriolis-Massedurchflussmess-, -Regel- und -Pumpensystem CODA vor

Daten auf dem Display erleichtern die Bedienung und geben sofortiges Feedback

Mai 21, 2025

Alicat CODA Gerätefamilie mit Anzeigen
Alicat® Scientific aus Tucson, Arizona, veröffentlicht das Alicat CODA™ Coriolis-Massendurchflussmessgerät Linien mit der einzigartigen multivariaten, integrierten Benutzeroberfläche von Alicat.

Zwanzig Jahre lang hat das Unternehmen Hauptstrom und Druck Geräte verfügen über ein multivariates Display mit Tastenschnittstellen zur Steuerung von Einstellungen und Programmierung. Die hintergrundbeleuchteten LCD-Anzeigen bedeuten, dass Systeminstallateure und Servicetechniker die Durchfluss-, Temperatur- und Druckbedingungen ihres Prozesses überprüfen können, sobald die Geräte eingeschaltet werden. In Labors können Forscher und Ingenieure alle erforderlichen Einstellungen ohne Computer oder SPS ändern. Ob im Labor oder in der Fertigung - die hintergrundbeleuchteten Displays sparen Zeit und bieten Komfort.

Die miniaturisierte Coriolis-Technologie von CODA misst und regelt den Massedurchfluss von Flüssigkeiten und Gasen unabhängig von ihrer Zusammensetzung mit einer Genauigkeit von ± 0,5% des Messwerts. Mit dem neuen menügesteuerten Display des CODA Coriolis-Massendurchflussmesser oder Controller, kann der Benutzer Durchflussrate, Dichte und Temperatur in Echtzeit direkt auf dem Display ablesen. Bei Batch-Prozessen kann der Techniker die Dosierung programmieren und dann die Flüssigkeiten mit dem Steuergerät per Knopfdruck auf der Vorderseite des CODA-Geräts dosieren.

Alyssa Jenkins, Alicat VP of Customer Experience, sagte: "Als wir untersuchten, ob ein Display wichtig ist, sagten uns die Kunden: 'Ein Display wäre fantastisch.Die CODA Flow-Produktlinie mit Display bringt eines der charakteristischsten Merkmale von Alicat in eine Produktlinie von präzisen Durchflussmessgeräten für Flüssigkeiten und Gase."

Durch das Hinzufügen eines Displays erhöht sich der Stromverbrauch geringfügig um drei Watt. Der CODA Coriolis mit Display ist kompatibel mit allen Kommunikationsprotokoll-Optionen für CODA-EtherNet/IP, EtherCAT, PROFINET, MODBUS RTU und Alicat Serial ASCII - sowie analoge Ein- und Ausgänge.

Die CODA-Produktlinie umfasst Massendurchfluss ReglerMassenstrom Messgeräteund die CODA-Pumpensystem. Dieses Pumpensystem nutzt ein Coriolis-Messgerät, um die Pumpendrehzahl über einen integrierten PID-Regelkreis zu regulieren. Während die Pumpe Druck für den Durchfluss erzeugt, misst und regelt das CODA den Massendurchfluss präzise.

Alle drei Arten von CODA-Instrumenten verfügen jetzt über eine LCD-Display-Schnittstelle.

Enabling Liquid Hydrogen Fuel Systems in Maritime Innovation

Alicat MCRQ Mass Flow Controllers Support TU Delft Hydro Motion Team’s Hydrogen Boat for the Monaco Energy Boat Challenge

Empowering Discovery on Water

The transition to sustainable energy in the maritime sector demands more than ambition, it requires precision. That is why Alicat Wissenschaftlich is proud to support the TU Delft Hydro Motion Team as a Bronze Partner in their groundbreaking 2025 campaign: to design, build, test and race Mira, a liquid hydrogen-powered boat at the Monaco Energy Boat Challenge.

Equipping this innovative project with our MCRQ mass flow controllers enables the team to manage hydrogen fuel delivery safely and accurately, helping them prove that liquid hydrogen can power the next generation of clean marine propulsion.

Mira at the official reveal, Hydro Motion Team’s 2025 liquid hydrogen-powered boat.

Figure 1: Mira at the official reveal. Hydro Motion Team’s 2025 liquid hydrogen-powered boat.

The Challenge: Making Hydrogen Work for Maritime Transport

The goal of the TU Delft Hydro Motion Team is as ambitious as it is inspiring: to design, build, test, and race a fully functioning boat powered by liquid hydrogen, all within one year, and to compete at the Monaco Energy Boat Challenge 2025. But beyond the competition itself, the team’s mission reaches further. By proving that a boat can operate successfully on liquid hydrogen, they aim to spark broader innovation across the maritime sector and demonstrate hydrogen’s potential as a clean, scalable alternative to fossil fuels.

This project builds on the team’s past successes with compressed hydrogen, already a proven, zero-emission marine fuel. But as the team pushes for longer range and greater onboard efficiency, storage volume and energy density become the next major challenges. To solve this, the team chose to work with liquid hydrogen. With a volumetric energy density three times higher than compressed hydrogen at 350 bar, liquid hydrogen offers a powerful solution for saving space and extending endurance, key requirements in performance vessels.

But storing and using liquid hydrogen introduces challenges. The fuel must be kept at -253°C, requiring insulated cryogenic tanks. The team addresses this with a custom double-walled, vacuum-insulated carbon-fibber tank system, limiting heat ingress to just 7 watts, equivalent to a small LED bulb. To avoid wasting energy, waste heat from the fuel cell is used to bring hydrogen up to the required ~20°C operating temperature before reaching the fuel cell.

These trade-offs (boil-off rates, tank volume, storage weight, and onboard vaporization) are exactly the kinds of real-world constraints this project is designed to explore. And while Mira is a compact, foiling boat, the broader engineering question remains: could a system like this scale to larger vessels, such as ferries? That is the kind of thinking Alicat is excited to support with partners who are pushing the boundaries of what is possible.

The Role of Alicat: Flow Control After Vaporization

Unter Mira’s hydrogen system, hydrogen is stored as a cryogenic liquid. Before reaching the fuel cell, it passes through a vaporizer, transitioning into gas at ambient temperature. This phase is critical: delivering gas at the right pressure and flow requires stable regulation, fast feedback, and precise control.

Simplified diagram of the Hydro Motion Team’s hydrogen system.

Figure 2: Simplified diagram of the Hydro Motion Team’s hydrogen system.

To meet this need, the team integrated the Alicat MCRQ mass flow controller immediately downstream of the vaporizer. This device manages the mass flow of hydrogen gas into the fuel cell and enables:

  • Delivers stable and precise feed pressure to the fuel cell.
  • Measures hydrogen consumption through real-time mass flow monitoring
  • Monitors pressure and temperature to help prevent fuel cell issues like dehydration or fuel starvation.
  • Supports test validation und real-world performance optimization.

Compact, ATEX Zone 2 certified, and designed for fast system response, the MCRQ integrates easily into the tight constraints of a race-ready vessel. Its role is vital during system development, helping the team collect data, tune parameters, and prepare for race-day performance. In short, it helps translate bold hydrogen engineering into operational reliability.

Alicat’s MCRQ unit mounted inside the Hydro Motion Team’s hydrogen control system.

Figure 3:  Alicat’s MCRQ unit mounted inside the Hydro Motion Team’s hydrogen control system.

Why the MCRQ Was Selected

The Hydro Motion Team, together with our application engineers, selected the Alicat MCRQ series for its proven capability in low-flow hydrogen gas applications, offering a powerful combination of precision, speed, and safety. Key features that influenced the decision include:

  • Flow range of 0–1.5 g/s, which translates to ±0.01 g/s uncertainty at a nominal 1 g/s flow, small enough to maintain consistent fuel cell output.
  • 4–20 mA analog output, chosen specifically for its high-speed update rates (kHz range)
  • ATEX Zone 2 IIC certification, requiring minimal additional safety infrastructure.
  • Upstream valve position, enabling precise regulation of downstream feed pressure, supporting target values like the ~2.5 bar commonly seen in fuel cell stacks.
  • ±1.0% accuracy of reading (or ±0.2% of full scale)

Together, these features provide the team with a robust, compact, and responsive solution, a key enabler of real-world testing and a step toward scalable, clean hydrogen propulsion.

Competition Progress and What Comes Next

The TU Delft team unveiled the boat, Mira, earlier this year and is now deep into the testing phase, preparing for the Monaco Energy Boat Challenge 2025.

As testing progresses, the team continues optimizing the integration between hydrogen storage, vaporization, and control systems. Alicat’s instrumentation plays a central role in capturing this performance data for analysis and refinement.

This partnership represents more than a technical contribution. It reflects our belief that sustainable innovation thrives where education, engineering, and real-world experimentation meet.

By supporting the Hydro Motion Team and their work on Mira, Alicat contributes to:

  • Advancing liquid hydrogen fuel systems in marine transport
  • Empowering hands-on engineering education
  • Promoting practical low-emission propulsion technologies

We are honoured to be part of this project and proud to know that our instruments are helping to steer the future of clean maritime energy.

Together, we are not just measuring hydrogen. We are helping to Fuel the Future.

Your Title Goes Here

Alicat Newsletter

Melden Sie sich für unseren Newsletter an, um über Produktanwendungen, Updates, Neuigkeiten und bevorstehende Veranstaltungen informiert zu werden.

Ähnliche Artikel